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ABSTRACT

A formalism is developed in which the nuclear potential is
explicitly worked into the radiation-matrix-elements., The result
is" an expansion of the ordinary matrix element in a power series

of ¥ and JE%. In each term of this series occurs explicitly

¢ c

the potentiat between the scattered particles. With these ex-
pressions the bremsstrahlung of n-He4-scattering is calculated

if the nuclear potential is assumed to be a square well. Further-
more the bremsstrahlung of n—p-scatteriqg is studied for two kinds
of interaction: a) square well, b) square well plus hard core.

If the parameters of these potentials are chosen so that they give
the same scattering length and effective range, there remains only
a small difference in the bremsstrahlung cross section for the two
types of potentials (some few percent). The shapes of the brems-
strahlung spectrum are equal in both cases. Some structure in the
shape occurs at the virgual bound state of the s-wave. The magni-
tude of the bremsstrahlung cross section is the order 10730 . 10729 ¢p2

if the energy resolution is 0.2 MeV. So it seems that nuclear brems-

strahlung can be measured.

*Permanent Address: Physikalisches Institut der Universitd't
Freiburg/Brsg., Freiburg/Germany.



INTRODUCTION

There have been several investigations on nuclear bremsstrahlung
in recent yearsl;3). The main point of view of these:guthors was
low energy bremsstrahlung and the possibility of measuring "delay-
times" of the scattered particles due to compound reactions. Our
point of view on nuclear bremsstrahlung is different: We ask
whether the bremsstrahlung cross section is sensitive to certain
features of the nuclear forces. In this paper we especially
investigate the differences in the nuclear bresstrahlung cross
section due to a hard-core-potential on the one hand and a square-
well-potential on the other hand. These potentials are taken in
such a way, that they fit the same low-energy scattering data;
the same scattering length and effective range. The radius of
the hard-core is taken from high-energy scattering experiments.

In order to investigate this question we develop in section 1
a method so that the nuclear potential is explicity worked into
the radiation-matrix elements. What we get for the usual radiation-
matrix element is an expansion in a power series of the parameférs

¥ and ﬁ@§ where p is the nuclear mass and ho the photon-

c

energy.“CThis series converges very rapidly in all low- and
medium-energy processes. The point is that each term of this
series contains explicitly the nuclear potential. Therefore a
multipole expansion in the usual way is possible and meaningful
because the nuclear potential restricts the contribution of the

matrix element to nuclear dimensions. This is what one expects,

that even in scattering processes the radiation occurs only near

-2 -
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the scattering-éenter.' This mathematical method is completely

)

equivalent to the well-known Bloch-Nordsieck4’5 -transformation,’
but we put it in a lucid light, so that it seems that insight

is 'deepened. In the second part of the paper we discuss the
bremsstrahlung of & square-well- and a square-well-plus hard-core
potential for neutron-proton scattering. The numerical results
are done only for s-scattering, but it is straightforward and
only a numerical task to calculate the contributions of other
partial waves. The expected result is that the cross section
seems to be different by few percent in both cases (the parame-

ters are taken so that the scattering length and effectiye range

are equal). On the other hand the cross section is of the order

P

1073 - 1072 millibarn if the energy resolution is taken to be
0.2 MeV and therefore measurable. So the nuclear bremsstrahlung

seéems to give no new information about nuclear potentials. However,

other potentials which are spin and velocity dependent should be ¢

discussed and their effect on nuclear bremsstrahlung should
be studied.
I.

Il: The Interaction with the Radiation Field.
We firstncorsideér:the..generaltinteraction ofictheoctworparticles
with the radiation field and develop a form of the interaction

operator which is suitable for practical calulations. We have

- -

-k -ikr

Hint=-§[-ﬁ'-€ eufr. + % -:? e‘ q] +
™, m,

+ i/‘u?.(t’— Ky 4 i (ExK) e r (1)
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where '31 and '35 are the momenta; m; , m, the masses; j; » By
the magnetic moments; ?l R ?2 the spin operators and ?1 ¥
the positions of the two pafficles; & is the number of protons
and A the number of nucleons in the recoil-nuclgus. R is the
wave vector and g the poiari_iation vector of the photon. The
first term in (1) is the B ° 2 (R is the vector pof:ential')
interaction of the two particles while the second and third terms
represent the Pauli- 1nteraction with the radiation field. The
transformation'of (1) to relative &? ? ?2) -and center-"qf-

mass coordinates (R = "'1;1 MY gives
-y SRR o iR(P) iR
ane = g BE [ e TR - pze T e
. | . my -"?.(m' ?) ?.g sf?ﬁ
of - [""r'(#r) ze M e ot
c - ()

u[f‘o"" (@b TR, pore e’ J

~ whefe M = m o +my o, P = :imfm an;i F,B are. the momenta of

the relative and center-of-mass motion respectively. The matrix
elements of fhe second term in (2) are small of the order \E,

compared to the first one, as can easily be seen by writing

Q s a c -

, where "a" is a length of nuclear dimensions,
Veum the velocity of the center-of-mass and hw the photonenergy.
This term represents an interaction of the center-of-masﬁ motion

with the "internal" relative motion via the radiati‘o_n field,

!
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‘The center-of-mass coefficients e' give by integration

over R-Space just the conservation of mbmentum, except for the~
second term in g@) where we get the additional factor _EQ%SEI:_. .
hREM(f)' is the momenfum of tne center-of~-mass finéiiy, Usually
whenfcalculating nuclear radiation transition probabiiities this -
term can be neglected, since the center of mass is nearly at rest.
We shall in further developments drop these center-of-ma§s dqbehdpnt ’
terms‘;%d:use the interacticn in ®-space: '

S LRm) R
H’int=*%%§[%—le (#)___M;_ae .

- , ". ny ? _ .
- £ kcm(f)“? [e"-_)'(%;?) .»'_z e" k (W )] + (3}
¢ M _ .

(ExK) g"i‘"(%v) + pa s (?xﬁﬁe‘k'(% ’ )J

. 3
+i [
In calculating transition probabilities forna‘nucleus, the bound
state wave functions differ from zero only in a region "a" of
nuclear dimensions and one has kea << 1. Therefore.in this

Case a multipole expansion is meaningful i e., only the dipole

" and quadrupole transitions occur. That this 1s stlll true in

the case of bremsstrahlung, where both initial and final wave

functions are extended over the whole space, is physically

" expected but not easy to see in the formula. We.show this in

developing an expression for the matrix element <¥¢{Hint|y,>
which is essentially equivalent to the well known Bloch-Nordsieck )-

transformation, but more systematic and lucid,



Let us consider for simplic1ty the single matrix elements of
the form: a) <Wf|p 3 e'lk?lvi>, b) <Wf| 'ikrlwi and
o c) <Wf|?’ n 'ik?lwi separately:

a) By using commutation relations with the hamiltonian of the
system*) |

H= % « V(7) | @

we have

) > > _olk? , =
w127 e gy = L KhI[EpeT HIY
‘R —5 -» <k 1 N\ =
- L rep 1T + 5 RSP [ HITHDS

A -AO L 7;’5)l<t/(5f7‘,ﬂj_fe"”; Hll

: LR
b L (K12 [T H, T
(kw) -
Now it is clear how to proceed. To understand what we have done,
we note that ey S
k¥
- "Lkl" L i(kj? (kk.)L ¢
L‘ RP H] _Ee '-7%;_ ( + v
kP (6)
.__R + m ) ku e ¢ .
N

#)We assume in this paper that the potential energy V(r)
does not depend on velocity (PB/p) and spin (@) . 1t is, however,
straightforward to calculate the modifications of the following
equations if this assumption is not made.



| .[[e""f HJ‘,.HJ = tw( __a*;“, V] + tu(rc*zf“‘)[ ! ‘J;(-;),_,};‘:

-
where k = _.k, is-a unit vector. Equation (5) now reads

<l&l£’opc¢.‘?;‘llf'> ﬁ) <l'$,[ VJe“""H‘I) o
108V (B e 3) I ¢ “PCEE, v]

- -ck?”r) + <Y1 (_f.,,tu )e‘f“"m} e

We see that we have an expansion of our matrix element N7 |£ Pe” ik-"lvi
-in a power series of lc,' and 7 . The last term in (8), in which -
no potential occurs, is so to say a “rest term“ It islstralght-
forward to calculate all higher order corrections.' The first term

in (8) is just the result of Bloch -and Nords:leck4 5) We shall

come back to this statement late:,.

b) We can proceed similarly to the outlined method in evaluating

all other types of matrlx'elemenfs. We get

(Hle™ ) = & (% 1Le e - -

= (ku)l<%l[[e“kr H] H]’V) = —"- <ﬁ’:§+%’vje~ckrl%>+

-~ (% 1(__f.,, ) [*%7 H]N>

Zrc‘

9) |



- Hpre we can check once more the earlier stqtementlthlt'tne second

tern of (2) is at leaet of the order %_ compared to the first one.

o <%l&* ey < U “"’,-#Jm)-
<& ChIET NI CHIEHI(ER b ge*‘IV)
' +,z;'- Al [g,‘:g,% Ve Rl + (;';, (el (&5
¢ ;-—%l) [e-.zii'; /f]/‘f‘ P '. | (10)
From the last formula we see, that if in the nuclear potential.V(P)

no spin-dependent part is present, the commutator [3™ W,H] will

.. vanish and the first nonvanishing term in the matrix element will

S ekk o4 -
be of the order Tt . - pC - Aw compared to the first term of (8)
; e L i * &

'and“therefoie very small, All these expansions (8), (9) aﬁde;O)
of radiation-matfix elements in power series of thelnuantitieem
% ‘and -3% have the advantage that the nuclear potential v(®) "
occurs i: the expanded matrix elements. Therefore one can pro=-
ceed for sho;t range potentials as in usual nuclear radiation
theory and a multipole expansion becomes meaningfuié Only those
regions of space where the potential differs appreciably from

zexro will contribute to the radiation.-

' Nuclegr Fonces. .
In the following we shall discuss a simple and special model
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for nuclear bremsstrahlumg. It is our aim to show in this section
how the formalism works; lster in part II of the paper we shall
compare the effect of dif#F ferent nuclear potentials on thg~brems-
strahlung. Here we .trea't the two particles without spin and

assume that the internuc Aeon force is static (not spiﬁ-or velocity-
dependent). As we have -3 ust remarked following equation (10),

the radiation according €=o the Pauli term is indeed very small

for such potentials. So we are consistent in neglecting the

" Pauli interaction with time radiation field, We further like to
stud‘:y the pure nuclear br-emsstrahlung; i.e., We a:e' not interested
in the brémsstrahlung'due to the coulomb potential. We thérefore
wconsider"th(e scattering o f neutral particles by charged nuclei.
Ofkcours:e,- the target nuc ieus should not be too large; so th_at-.
the recoil will b;e apprec iable. An examplerfor this case would

be the scattering of neut =xons by protons or a-particles. Further-
more we neglect many-body effects, which may probably be of interest
if the target nucleus is =more complex and not'only a proton., The
~formalism is expected to Xoecome more complex when both particles
are charged; naturally, because of interference between coulomb _
and nuclear bremsstrahlun«g. The interaction (3) transformed ac- -

cording to (8) and (9.) noww reads

Hint .= - &k 2 1 [{’gm_dveik'(;’a'?) .
| "o r

c W Aw
| ~ R T)
ok m [ (£ V) ~ £ K aradl)]e
R o (E R+ S )" s
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i

We note that one has to use the exponential”fuct;;i of equation (3)
in formulae (8) and (9) So where we have a vector F in (8) lnd
(9) it should essentially be replaced by 1} k = I%I k.

‘For simplxcity we choose here the internucleon force to be
a square-well-interaction. Later in part I1I we will discuss

another type of interaction. So we have

{ve-v. for 0cred
0 for rea ! - (12)

V=V =

and

:. where ?>p are unit vectors in spherical basisé) Eipanding the
' plano waves in (11) in electric and magnetic multipoles, we can
restrict ourself to dipoles, since ka.m 107 -2 when the energy
of the incoming particles is of the order 3 MeV (and therefore
the highést photoenergy is ~ 3 MeV). We see that because of
(13) the first term and the last term in {11) contribute only
"electric dipoles. Since the last term is of.the order- ¥‘: f%
smaller than the first one, it will be nngectedt Let us iemark:
that in general the only magnetic interactions in (11) are coming
from the second and ‘third term and are of the order % smaller
tﬁgﬁ“¥ﬁ€;domfﬁiht"électfi&”%@rms as long aS‘fﬁgwfﬁterﬁucleon
potential is spherical symmetric; fie., V=V(r)y'. This can
easily be proved by writing ddWﬁ;thp multipole expansion.for the

plane waves.

" %As can be seen from (9) the contribution to the radiation
evoming from the interaction of the center-of-mass-motion and the
relative motion vanishes exactly in dipole-approximation.

WV= - Ve F’T“f("@) 2T fr N (13)
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We- shall neglect the magnetic. dipoles ioe; Secause in our "
case they afe‘of the order ! ~ %ﬁ (for f=p scattering). and
;% % ~ é% (for h-a scattering) smaller than the electrie term.
'However in the case of resonance scattering (especially for
broad reeonances), for instance, one should look at this ap-
proximation with cauti?bﬂ iIf, for example, we have a broad
‘p-wave resonance, the\megnetic contributions mignt bé apprecigble®*). -

Let us use circular polarized light-quanta
. . .y e :
€ =-pity = -p % Dy (e, 62,0) fr- (14)
' p= .},-'
where 'ﬁ; is the circular unit vector6? in‘the,system with
lz-axes along the photon propagation vector i?. ¢R»eg» are

the angles Specifying the K-direction in the laboratory system.
v Now we have finally

(Hint)p; oo =*p,i Yo |fx t/“(r—a-)Z (%67.?,0})”(0,10 (15)

Ihe Wave Functions for the Initial and Final States.

The initial wavé function characterizeb_tne incoming neutforis

flying in the z-direction (axis of quantization).

oottt 2 (welh) e ) Too (s e Yoo (B9)

e A . . A dE

N ‘ -(16) - .
'\yith the asymtotfi\c form

‘7’7 ~ eLsz f(ﬂ ?) e - . i)

[

*Furthermore one can see from (4) that for static potentials, we
are discussing, these terms ars of the order “Ka" smaller than the
dominant terms; because in the approximation we have [H 1kuj o

. . . s ’e : = .
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The partial waves are

| u, () = %7 ¢ ng (ker) |
| oy .(N)..M,,tn,mr)) for rak

cyr il ™ v (k) (18)
We (k‘) 4 (e. (K:) fe (kir) . for P4
where fg(K, (co:n}g(() Jc ) - mJe(Ko)%('ﬂ x))(*‘ (Ka'>>

*l
K& ' 7. ) 2pd

"N is the number of partial waves with phase shifts 1r'(K) dlfferlng
apprec1able from zero. ,
The final state characterizes neutrons moving in a direction ‘k

e R +cf(vz(«¢) u,(w)Z Vom (6, %) 609,
20 L

- with the asymtotic condition

% . Ci‘;’?._’_ ‘F/:‘/V) e‘ék’r

(20) -

We note, that the correct final wave function must have an in-

coming spherical wave'). Therefore we have

Ue (k) =yr it #(I(,r)
e tly) mt“c(&)Je(&r)-w%wc(K,r) forrzaa

fe (k) je (t'r) for red&

(21)

Welk,) = 4w (¢
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where k% and fe(Kf). are similarly defined as Ki and fe(Ki) .

. The'matrix element of ‘interest is ‘
K [ #0r-8) Z Djo, Wi 1> = a:‘g [W,,;‘*"*Z},‘ c(ew,:,e/m)
(v v, (&) 4 (&a)z«,,, (6:%) ) Y t0) e 'J/'mn)
‘,yw (/(‘) 0 (k) +",,h7r_‘—_ﬂze:-3,;' C(e-1,1,€|000) (’}e *x) ¢-.("‘)‘
- ug (k) %c-,("d) )Z,/M)Z e, 1,elomm) Yeul®) U /U

| (22)‘_ :

The C- coefficients are Clebsch-Gordan coefficients in the nota~-
tion of Rose® ). We see from (21) and (22) that only partlal
waves with phase shifts different from zero contribute,. as
expected®), We like to note that we have dropped that term’ of

.+ the matrix element which contains plane waves on both sides.
because it does not -contribute to the cross section. Formula (22)
'+ contains the correlations between the scattered parficles aﬁd

~ the emitted photon. Averaging over both directions gives

v ” ‘//< IV0r-8) Z Dpp Yl 121" g2 d 2

e A Z [C(C+/ /,€/000)* X, 100) [ K&) Vep k)= %(W”"/")/*

% 2

¢ Clet,1,80000)* . 100) [0 048) 5, (6:%) '2“““)(2‘3‘;"""?)/]

*)This follows in this case from the fact that M Uc_ - Ue
"’0
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Here we have used orthogonality of the Yem and Dy, and

mp
unitarity of Clebsch-Gordan coefficients. Introducing the
quantities A2 and 82 by using (18) and (21) we get

[(mt}c(&)dzc(/{c%) U (A;g)ne(l(,d)) (m Sen (k.)}u,(/(u)-
= 2 Bons () ey, (6:5) )* = 2 con (Fll) +5,, (k) (con Vo ()
s fe(Ke&) = v Ve (%) e () )(com Sra, (i) fen () =

=i )t 80) (e (48) o O &) # (st dente )]

(24)

and

‘r(&ovw&(&)je (K &) —win % (&) n,(k,a)) (m;’ (k)

- feal6E) = B 6 w,e,,(z.a.)) - 3 con (5 () o6

(m&muo(r &) = on Vi (4) u, (43)) (03 Ven, (k) Jom (:5)-
= 20 Vs #:) u.. '(k@) (}e(’(cd/)Je ,(I(.o»)) #(Jg(K;a)Je ,(K. E)) j
(25)

Inserting all factors from (18) and (21) we get for equation (23)

AR, %’ D'H, Y.,.,W’c >l:u/ - quu ‘
‘5(1&»3) C(er,1, ¢ looo)LAez Ft-é ¢-1)C (e, I,e/ooo‘)l‘ B2
e |

(26)

—
_ 2€7)
Here we have used the relation ch'”)-“&n Yyt . The

‘bremsstrahlung cross section is defined as the transition

probability between initial and final state divided by the
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velocity of the incoming particle.

do- = -7-;; d2g d g d & (27)

where k’),?’ >, L )
L¥ Ywe' T
_7—=ﬁ;m‘i§’<—; [t (VT

/"‘; )3 s | (28)

§76§;) = ‘PWF!‘} '2 | o

The factor 2 1in the density of states p(E;) is coming from
the spin. L 1s the length of the normalization cube. The
density of states of the photon is included in the factor
-L;;-g of the transition probabilitye). The sum over the
ngagization £ in (28) éives just the factor 2 since (26)
is independent p (which characterizes the polarization -- see

(14)). Adding all factors we finally get by integration over
dQdeQk and using (26)

—, &
to - SE)E)E) Gy IE T [Fev

cClerhy 1, € (000 )t A + (28-) C L, e/oaa)‘&‘]

(29)
E vo

Let us now consider the cross section (29) in the limit R 0 ;
° °

i.e., in the limit of low energy scattering from a weak potential.
In this case only s-scattering occurs and the s-phase shift is

given by
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SN/ Lk N
: \
Ve, 3 Wovyi fax v/ 3 o)

2 _E 2 _ Vo : : cac
.where x“ = g- ) = E— « Inserting this into the expressions
) 0 ‘
_(24) and (28) for Ag and B% and developing jo(x) %1,

jl(x) ® % , no(x) ~ - % , we obtain

&y
z 2 Y 702, 2 . xte =X
140 t B, - }% (xo XX ) o/ €,

(31)

So we have in lowest order for the square of the matrix element
a constant and for the power radiated via bremsstrahlung according

to (29) a dependence like VEf on energy. This is shown schemati-
cally in figure 1.,

A Power

EX  Energy of Photons

Fig. 1. Power spectrum for nuclear bremsstrahlung

at very low energies from weak potentials.

1.3. Approximate Bremsstrahlung Cross Section for p-a Scattering.

We shall now present an approximative calculation for the

bremsstrahlung cross section for neutrons scattered by He4° The

. e ———— e
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approximation made is that the neutron spin is neglected and that
the wave functions for this scattering process are assumed to be
those of a square well with parameters a = 3.21 fermi,

Vy = 19.65 MeV according to the work of Sack, Biedenharh and
Breitg)o We used further the experimental phase shifts of Clementel
and Villilo), where we identified their P,/,-inverted-doublet phase
shift with our p-phase shift. The energy E. of the incoming neu-
trons is chosen to be Ei x~ 1.4 MeV, just above the P3/p Tresonance.
The numerical result for the energy-dependent terms of the power
radiated by bremsstrahlung is shown in figure 2.

Using formula (29) one gets a cross section of the order 1072
millibarn if the energy resolution is chosen dEf = 0,2 MeV., It
is interesting that the bremsstrahlung differential cross section
shows a maximum in the region of the p-resonahce° This can be ex-

pected. However, the details should not be taken too seriously,

because the approximations made are crude.

I1I.

Comparison of the Effects of Hard-Core and Non-Hard-Core Potentials

on Nuclear Bremsstrahlung.

We now discuss the possibility of differences in the brems-
strahlung spectrum due to hard-core and non-hard-core potentials,
The formalism developed in section I where the nucleon potential
is explicitly worked into the radiation matrix e;ements suggests
such a possibility. It turns out that bremsstrahlung cross sec-
tion is different by only a few (5%) percent for both types of
potentials.
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II.1. he Wave Function of a Hard-Core Potential
The type of hard-core potential we shall investigate is shown
in Fig. 3. The hard-core is represented by the potentiaL Vl .

I 7 @Z

Fig. 3. The type of hard-core potential which we
_ investigate. We take, however, the limit Vlﬁﬂm
Let us.construct the wave function of this nuclear potential in
the usual way by constructing the wave functions in regions I,
I1I, III (fig. 3) and fitting their magnitudes and derivatives at

the boundaries. We introduce the folloWing notations

2 V‘E) -
Py=stel | dly = -2 p Y=4h13
A ' (32)
For positive V,, and small or negative E the dv become complex.
In the other cases they are real. The equation for the radial
wave function Re is
d*#, , 2 0‘& +[/ e(eH ]p

For the regions shown in figure 3 we have the following solutions

of (33) with regular behavior at the origins

-
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I: AC J‘C(Pq
3& (Lm..}e()Je (f) - m%mn, (f,_))

(34)

. 0 |
II1I: Ce (Cw%’s)cfc (A) — w't)e )ne (PJ))

Jg and ng are the Bessel and Neumann functions with the‘asym-

totic behaviorll)

‘ pe
de (f) 9~>o> Ay (2e4)
(35)
_ Ma3.5 @e-y :
Re (Y) Q>0 PC-H
and p ‘J
' A -~ 2(ex) T
36

nep) 5% 7 [p-3(em]

(2
The e

are the phase shifts of the e'th partial wave in the
regions indicated by the index ¥ . From (34) we get the following
equations for determining the coefficients Be and Ag due to

the continuity of the wave function

"’JJ-QA) -mw?c m_(-ﬁA)]

Be [ 9 e ben A) ~ain eV ()] = Ce [0 v a

and for the logarithmic derivatives
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£, [m (‘)J& (dzﬂ) i ‘(}é() VY (ot;‘)]l;'}"c 73 kcﬂ) —ma%‘ cm]

ity s ) i "l ey )] [P ot ) -k nc(-c,) "

Analogous equations hold for the boundary I/II. We have there

fe Jo 6n) = Be [cnh®s, r &) ~onia e me 1 6)]

(39)
and .
({16) -, [o&:n?e Zg G, ) - 2ann Ve "c’('(z ‘[7 (40)
40
J"‘a“&) [w: e, }'g(aez ¢) - m&"’n;(-(,,ﬁ]
From the last equation we can determine the phase shift Lta':
{? ;%(z)‘__ :{-i J:;l (a ‘)jo(‘ﬁ@) -,}'c'@z &)J& G ¢) |
- ) - , (41)
%1 o &1b) ue(,6) — e 46 yeler) |

oLy
Since we are interested in the limiting case V4, =©; i.e.,
infinite hard core, we have to look at equation (41) in the

limit a, = io0. Using (36) we get

L-w(.c.& K(C+)T) Cos (a6 %(w)rj

-

o( J’&(ﬁé) > 0(4 xX.C (f‘dd')z‘
J-C (ot &) <4-ie0 coo (ta b~ Y (C+1) )

*a b

< -y dg (a6 -G (er)T) -

=
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Remembering that a, is complex for positive vV, » we put

¢ . 2 VQ’E)
oAy= ) =¢ —L;a'.""' |
(42)

Inserting this in the arguments of J?"f‘) and writing this in

exponential factors we find
v
¢, >0 1'6 (‘446) ‘
and therefore we have , - w "(J &)]
. !/ A g n-% ()
gl lg,&eh') - % dLe(c(;_G) JC (dl‘) ‘Jﬁ‘QG/ [ d{jgﬁ")
A,

&) -0 W (8) -y a8 hebst) Z;’—“%} ‘te:::z]

, j—c("‘z") N _ % J,el&t‘,‘“zlkz‘/)]
— (¢, €) 1 < j";&’zc) He by 6) (aa)

During the last step we kept the range of the hard core, "b",
fixed. From equation (38) we can calculate the other phase

k §
shift #c, . We have

9 (3) J&l («sA4) — Te J,’c (s A)
g =
| e (A) — T e ("‘3A)

(45)

where (46) ‘

T« % Lidleh) -] |
(e bud) - gl ne @A)
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11,2, The Wave Function of the Square-Well Foten;;al.

These wave functions are well known. Although we have
already used them in section I, we shall summarize the results
in order to be complete. According to AV
figure 4 there are two regions which we
call II and III. The wave functions and

_ €Lii-—»// 44
phase shifts are evaluated with the same *&,/,/ 7

method as in II 1.

Fig. 4. Square well
Eotgntial. The parameters
a, are somewhat dif-
ferent from those of the
square well in Fig. 3.

We have
- . |/ €)'
i1t Be Je (<, v) ! ’V(z
| (47)
[ ’ 4 ‘(") 7 =z l{
1998 (GM?}&JQQ((,")’M’& n&(-(,r)> / &'75.! &
Y :
T T2 LB [e (Ga) —je (k) je (&)
‘s'&ms B fetad) e ) ¢ 4eba 48)
gs_ je@E) Ue GE) - fe .8) he (338)
b 3 [C"“Zszc(-t}a'v)“M%m“e (430 )_7
15€‘=: (:c (49)

}.C (02;_6'1: )

11.3: Calculation of Bremsstrahlung Matrix Elements for_ the Two

Kinds of Potentials.

As outlined in section I we used the gradient of the potential
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for calculating the dominant terms of .the bremsstrahlung matrix

elements. We have for hard core and pure square well respectively,

1 gradV= F [Va Fev-6) +Vo Vv -a) ] % D';.R(E)K,.

- (50)

2 graodl/ = F [V, Per-a)] = Dpp (€ e

!
where F= ek 'g —_ I%I (compare equation (15)).

P FE A W

The matrix elements we need are of the type

&) [ grad VI Y (60)0 (1)

where Vc(E;) and 1V, (E;) dre the final and initial wave func-
tions we have constructed in equations (21) and (18) but with
some modifications in the radial part of the partial waves
according to the results of II.1 and II.2, We further make

some changes in the calculation of the bremsstrahlung cross
sectiont We neglect the contributions of higher partial waves
(which we included exactly in section I)., Therefore we write

for the wave functions

Ue) = 2 we (€)

(52)

This simplifies the calculations in the hard core case, which we
now only do and we note, that the square well is discussed in
section I. Since the angular dependent terms are the same in

both cases (50) we only calculate the radial parts of the matrix



elements. We need the wave function a‘1': the points ¥ = b, A,

as can be seen from (50). At ¥ = b _we have according to (34)

B& CM'\}& ) (?e (O(z &) ‘3 '}c(“nc ("Z @))

"'(z) SN fe ) p G nlat bty €) ) (o“ (Ve&)
°¢'4 J’c (“1 4) %' n “ ‘)

Be coo (53)

QW s/ (2)
We used (44) in getting this result. Ve is the bin. Ve

—

"
So we get for the radial part of the matrix element between

the partial waves We( E) , We,(E )

T o
Y ) [Vy Fer-6) | Het (E0) 2y put™ v,,< )&Bemmﬂ eonb

( cLeé‘zél ué&z") ( J’C’ @(z") né'(d'“)#(-‘zé)ju&.‘)~5*
JG(d‘ ‘) ne(“z‘)‘ Je (2 6,) e (1 6) |

(54)

Inserting the factors a, , o} from (32) and (42) and the

coefficients BX , B from (47) we get

e'

(‘f (€)1 Va &(r-é)/‘/y{f.))MM VVU-E V-Y+E; C: Cer ™

0)

(J'& («:A) — {av‘clz)nc(«;A)) (Jrﬂ (x{VA) - )zj')em ,(gj{r,q))con& cosllp”

% Ug () ud(a) % (55) z

where

T k), utns) |
de 6 6) “Ne (< 6) ;c &, g) !

) ' (ta‘) ‘
[jc (<2 A) - Jf{iﬁ) uc(“zﬂ)] (56 )

UelE) =



,(Ge,(,g/“ 'Lj ,}e, l’lc/<34)) cer b (m,}c/z)[lf
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All quantities in (55) depend on energies E or Ei + The Ce

can be taken from (21). The other contribution to the matrix

element is

' Q). 1.,
b (6) 1V, Sr-a) | Fer (€)>PM(P«¢ =V Cop Cpr (felrA-%Ve n,((,p)

X (J'C' (“(3 A— l? 72'.“’(3) hgl(ds A}) cod lﬂc (”Gm 1)6’6)4 *

(57)

Here we have used the last of equations (34). By adding (55)
and (57) we get finally for the radial part (of the hard core
plus square well potential contribution to the matrix element).

Yo () lgrad V] G (6Dt por = CFCer @2 (feb, )~9;2"’~g).
'sz £

I.
cworeter () (2)' ]

We see here, that the only essential difference of thebrems-

(58)

strahlung matrix element of case (50.1) (hard core square well)
compared with case (50.2) (pure square well) is contained in
the first term of the bracket [ ] in (%8). The functions 142
(56) describe the contribution to bremsstrahlung from the hard
core. It is interesting to note that the contributions of the
hard core and the square well in (58) are opposite in phase;
i.e., they interfere destructively. Of course, the square well
is accelerating the particles in the opposite direction to that
of the hard core.

It is now easy to write down the radial part of the same

matrix element in the case (50.2). This we do for completeness:



%

| A a2 (7 i > | P
CHAE) 1V Btr-i) ot (6D Dmtrpart = G G KB (o)~ 4 e )

(o G5 =Ny B g @) oo e 00 e (59)

1l1.4. Fitting the Parameters of the Potential,
The range of the hard-core potential *b"™ is taken from

12y 4o be b = 0.4 fermi. The

high energy scattering data
parameters a , V, and a, VZ are in both cases somewhat
different. Let us assume a , Vz to be given (for instanée

from low energy scattering data by fitting the scattering length
and effective range), we then determine the parameters a , V2

so that we get for the hard core the same scattering length and
effective range as for the square well potential. In other words,
we expand the s-phasé shift in a power series of the énergy and
require that the two lowest terms of the series are the same

for both potentials. We then get two equations which determine
the parameters a , V, in terms of the parameters a , V2 .

The phase shifts are given by equations (45) and (48); however,

the s-phase shifts in both cases are simply connected by

5an) = 710, 0) <8

(60)
Let us now introduce some new quantities _ tz‘
Gasx wbax - E ) 8= (61)
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The analog definitions hold for the barred quantities. So
we have expressed the old quantities a , V2 , E 1in terms of
the quantities 66 y Y » X . The equation for determining the

unbarred quantities from the barred ones reads

— ! - -
0’? 7}"&)(500 Y,x) = o’? ["}o(:)( €, V%) _x'] = cl: ;Q)@;/xl y)

(62)

Let us now be more specific and restrict ourselves to the

case of neutron-proton scattering. Here the parameters are due

to the results of Blatt and Jacksonl3) (1950): a = 2.58 f and

V2 = - 13,3 MeV . Therefore we get é;o N 5,67 MeV, y ® 1.531 ,
&, = 41.602 -6 . Keeping these quantities in mind we proceed
and get from (62)

§ Q)
FG) _ g Ve G,y X) +h¥
Cﬁ (7}0 (&/Y/X)‘Xu) - - ‘,/%1}0(3)({.’%)()./3& (63)

We now can easily derive from (48) that

’1}(3)(g V;: 'S" v cly ey ' |
AT - = ver S

Since we expect y Sy , cﬂgy “-ctg? = 0.04 and in the low energy -

limit we have % << 1. So we can develop expression (64) and get
/. F B —~ Y5y 1 x (9
GZ? ]}; {£9[y1X) —_—— Z_xﬁ— [’ T yt Y' yj (65)

Now we develop (63) also -since x; <<'1 and get

o(} [#(x?x.xz,)—x,] = _ff_il’ [/+z' ;:(lf)’%)yléy] (66)



28

We therefore can write equation (62) in the form

YoGY [iv3 £ 2) Y] = L1435 7497)

Y (67)
This equation determinés the parameters vy ’éso from the
parameters vy , Eb . We now assume that the square well does
not differ much in both cases; i.e., we assume that
Vz": V?. (/"f' f)
£ << 1
- ] _
&o =&, (4*q) (68)

?and 7 are to be determined and are assumed to be small numbers.
It turns out that these assumptions are consistent with the result
we will get for §' and 7 . We now remember the definitions (61)
and introduce (68) in (67). Setting the first two coefficients

of the same power in energy E in (67).equal and linearizing

the two equations for { and ;7 we get

a..?+Q.L7=C.

az + all = cl
| g 7 , (69)
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.From thesé equations it is easy to determine f and ’ and

we get ; = 0,129 , 7 = 0.125 which is consistent with our

- assumption that theée quantities should be small. According

to (68) we have the result that the two square wells are nearly
equalt The square well connected with the hard core is somewhat
deeper and somewhat less extended than the other one. 'Furéhe;
it is easy to see that V2a2 = Vzgz to a ver& good approximation.

So we get the same binding (or virtual binding) energy in both cases;
What we have in fact done is to demand equal scattering lenéth.qnd :

effective range for the two potentials we are discussing.



h2t

30

’ powev

I 3

l-"

N
0.8
01}

/A%
0.4
0'3 +

LY (Ve
i :(t% q,"-olé‘

N,
\'x | Péofanenargy [”cl{/

' 1 ,

0‘.2. oy . 0.6 0.¢ ho /. 2 ' h

hiun
EQ 2. Power ‘Specfrum for newt ron —//e - Bremsstra 7

tion was

" For this estimate « sguce o ~well- interact .

chosen with paramcters w = 321 f, Vo.: 19.65 MeV.

; ' " Y - e ’ '/' e

The encrgy Fer The 1hco v g neytromns (s Zaken
tobe E;,= 1Y MeV,



4 Power 1o 31
ﬁ g _4- lv‘I‘l “"dE
3 thm; $
T
7.
)
¢ 1 7//]?
¥
I3 ,’/ !
}l
N ) .‘/. |
Z
/
L
39 ’
e -z
— . =Sttt onoo Sl s
1 1 : mofonencrgy
L . . R | ° 5
0.1 0.2 03 oy o4s 05
Fq. S : Power spe.trurm of Miclear Brewmss frahluwy

for a haclcors ("""") aucl ¢ square &\/elt_("‘f)
POfCMfI‘QZ Which +it Mg name SCa Z.‘.‘,‘?.‘en’n'g‘ fengﬂy
Crongi effe(;'/'/e‘f"e: R R VRS 'f'.m’ wcw'from -/:W'r')fOV) -

Scattering, £,= ¢ M.V,



32

RESULTS AND DISCUSSION

We have done some numerical work in order to find oﬁt differences
in the cross section for brémsstrahlung due to the two types of po-
tential we are discussing. The result is shown in Figure 5. The
two potentials give for s-bremsstrahlung nearly the same shape, and
the cross sections seem to be different in both cases by only a few
percent (~5%). The bremsstrahlung of the hard core potential is
smaller than that of the pure square well. This is dué to the de-
struétive interference of both potentials. The particles are accele-
rated by the hard core in the opposite direction as they were.accele-
rated by the square well. As can be seen from (58) the shape of the
bremsstrahlung spectrum is for both cases nearly the same, because
the shape is essentially determined by the squared factor before the
bracket [ ] and this is in both cases nearly the same. The bracket
[ ] depends only smoothly on energy and is nearly constant over the

energy interval we have considered. However, it seems that the

" nuclear bremsstrahlung should be measurable, since, with an energy

resolution of about dE, = 0.2 MeV, we have for the differential

2

cross section do ~ 10°° - 10'3 millibarns*.

At low energies, before the cross section drops to zero, it

‘shows a maximum (Ef‘u 50 KeV). This is due to the bigness of

tbe s—Wave‘functién at the nucleus (virtual bound state) and

*It seems useful to note here that the magnitude of the cross
section depends on the energy of the incoming particle. So per-
forming experiments and comparing these with theory, one has to
know several experimental parameters accurately.
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similar to the—maximum of the magnetic photo-disintegration cross
section at the same magnitude of enef@?t\\\

We have done the calculations without spin. This gives good
results as long as we discuss static potentials; i.e., without
spin- and velocity-dependent terms. This statement has been
proved following equation (10). However in the next step one
should discuss this other class of nuclear potentials and try
to find out possible differences in the nuclear bremsstrahlung.
Further it seems to be an advantage to look on bremsstrahlung at
even higher energies, because one can expect there a bigger cross
section since more partial waves contribute. This, however, is

more or less only a numerical task.

I am indebted to Professor R. A, Ferrell for suggesting the
study of nuclear bremsstrahlung and many fruitful discussions.
Further I would like to thank Dr. A. M. Green, Dr. M. Danos
(National Bureau of Standards) and Dr. L. Maximon (National Bureau

of Standards) for helpful discussions.
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